Synthesis and Crystal Structures of Three Four-membered Ring Compounds containing $\mathbf{P N}_{2}$ Ti Skeletons \dagger

Michael Witt, Herbert W. Roesky, * Dietmar Stalke, Frank Pauer, Thomas Henkel, and George M. Sheldrick*
Institute of Inorganic Chemistry. University of Göttingen, Tammanstrasse 4, D-3400 Göttingen, Federal Republic of Germany

Depending on the reaction conditions, $\mathrm{Ph}_{2} \mathrm{P}\left(=\mathrm{NSiMe}_{3}\right)\left[\mathrm{N}\left(\mathrm{SiMe}_{3}\right)_{2}\right]$ reacts with TiCl_{4} to form the titanadiazaphosphetidines $\mathrm{Ph}_{2} \mathrm{P}\left[\mu-\mathrm{N}\left(\mathrm{SiMe}_{3}\right)\right]_{2} \mathrm{TiCl}_{3} \mathrm{MeCN}(1)$ and $\mathrm{Ph}_{2} \mathrm{P}\left[\mu-\mathrm{N}\left(\mathrm{SiMe}_{3}\right)\right]_{2} \mathrm{TiCl}_{2}-$ [$\mathrm{NPPh}_{2} \mathrm{~N}\left(\mathrm{SiMe}_{3}\right)_{2}$] (2). Compound (1) dimerises slowly in solution with elimination of $\mathrm{Me}_{3} \mathrm{SiCl}$ to yield a tricyclic system containing a central $\mathrm{Ti}_{2} \mathrm{~N}_{2}$ ring (3). X-Ray analyses of these compounds show (1) and (3) to be monoclinic, space group $P 2_{1} / n$, while (2) is triclinic, space group $P \overline{1}$. Compound (2) has a Ti-N-P angle of 170.3(7) ${ }^{\circ}$ and a short exocyclic Ti-N bond of 179.2(9) pm.

Recently we were able to incorporate Group 5-7 transition metals in $\mathrm{S}-\mathrm{N}^{1}$ and $\mathrm{P}-\mathrm{N}$ systems to form six- ${ }^{2}$ and eightmembered ${ }^{3}$ heterocycles which may possess delocalised electronic systems. Group 4 elements like titanium should react in a different manner because double bonds are unfavourable, as has been shown in the reaction of TiCl_{4} with silylated amidines ${ }^{4}$ and di-iminophosphoranes ${ }^{5}$ where zwitterionic four-membered rings were formed with rather long Ti-N bond distances, thus indicating partial donor character. ${ }^{6}$ Since the reaction of $\mathrm{Ph}_{2} \mathbf{P}\left(=\mathrm{NSiMe}_{3}\right)\left[\mathrm{N}\left(\mathrm{SiMe}_{3}\right)_{2}\right]^{7}$ with VOCl_{3} afforded an eightmembered ring with two metal atoms, ${ }^{3}$ we expected the corresponding reaction with the valence isoelectronic TiCl_{4} to yield compounds with unusual properties which might make them useful as catalysts in organic synthesis. ${ }^{8}$
in MeCN at ambient temperature, bright orange cubes were obtained by crystallisation at $-25^{\circ} \mathrm{C}$. Elemental and X-ray analyses of this material, which showed a singlet in the ${ }^{31} \mathrm{P}$ n.m.r. spectrum at +25 p.p.m., indicated the formation of (1) [equation (1)]. Compound (1) decomposes above $105^{\circ} \mathrm{C}$. Prolonged heating in MeCN and crystallisation at $-25^{\circ} \mathrm{C}$ affords yellow needles with a ${ }^{31} \mathrm{P}$ n.m.r. signal at +37 p.p.m. X-Ray structure analysis showed this compound (3) to have a tricyclic skeleton generated by dimerisation of (1) with elimination of $\mathrm{Me}_{3} \mathrm{SiCl}$ [equation (2)]. Repeating the reaction in MeCN in a $1: 1$ ratio as well as with an excess of the aminoiminophosphorane affords yellow crystals melting at $135^{\circ} \mathrm{C}$. Phosphorus-31 n.m.r. investigations showed that this compound possesses two different phosphorus atoms, one giving a

Results and Discussion

The reaction of $\mathrm{Ph}_{2} \mathrm{P}\left(=\mathrm{NSiMe}_{3}\right)\left[\mathrm{N}\left(\mathrm{SiMe}_{3}\right)_{2}\right]$ with TiCl_{4} in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $0^{\circ} \mathrm{C}$ yields a dark red solution which shows four independent signals in the ${ }^{31} \mathrm{P}$ n.m.r. spectrum. After stripping off the solvent and dissolving the amorphous orange-red residue

[^0]sharp singlet (+25.3 p.p.m.), the other a broad singlet $(+2.7$ p.p.m.). X-Ray structural analysis confirmed the formation of a 2:1 adduct [equation (3)]. The structure of this compound is somewhat surprising, since the corresponding reaction of TiCl_{4} with excess of amidine yields a spirocyclic system [equation (4)]. ${ }^{4}$

Compounds (2) and (3) could not be purified sufficiently for elemental analyses. All three compounds decompose in a mass spectrometer. The common feature of all three compounds

(2)

Figure 1. The molecule of compound (1) in the crystal, with nonhydrogen atoms labelled

Figure 2. The molecule of compound (2) in the crystal

Figure 3. The molecule of compound (3) in the crystal, with independent non-hydrogen atoms labelled
(Figures $1-3$) is a cyclic $\mathrm{PN}_{2} \mathrm{Ti}$ ring skeleton, planar within tolerances; (1) has C_{s} and (3) $D_{2 h}$ molecular symmetry within experimental error. The Ti atoms of (1) and (3) have distorted octahedral environments with the Cl atoms all cis, the sixth position being occupied by a co-ordinated MeCN molecule. The Ti atom in (2) exhibits square pyramidal geometry with the exocyclic N atom occupying the apical position. The central $\mathrm{Ti}_{2} \mathrm{~N}_{2}$ ring in (3) is also planar and is tilted to the two parallel PN_{2} Ti rings by 22.6°.

All the N atoms bearing $\mathrm{Me}_{3} \mathrm{Si}$ groups exhibit essentially planar co-ordination; the $\mathrm{N}-\mathrm{Si}$ bonds are slightly shorter than the sum of the covalent radii of $187 \mathrm{pm} .^{9,10}$ The P-N bond lengths in the rings lie between typical single and double bond lengths, and are comparable with those in cyclic phosphazenes. ${ }^{11}$ The angles at the P -atoms lie around 100°, at the N atoms $>90^{\circ}$, and at the Ti atoms between 72.5 and 74.1°, respectively. Though the $\mathrm{P}-\mathrm{Ti}$ separations (approximately 270 pm) are smaller than the sum of van der Waals radii,* a direct bonding interaction can be excluded, as well as in the central $\mathrm{Ti}_{2} \mathrm{~N}_{2}$ ring in (3), where the $\mathrm{Ti} \cdots \mathrm{Ti}$ distance [301.4(2) pm]

[^1]Table 1. Crystallographic data for compounds (1)-(3)

Compound	$(\mathbf{1})$	$(\mathbf{2})$	$(\mathbf{3})$
Sum Formula	$\mathrm{C}_{20} \mathrm{H}_{31} \mathrm{Cl}_{3} \mathrm{~N}_{3} \mathrm{PSi}_{2} \mathrm{Ti}$	$\mathrm{C}_{38} \mathrm{H}_{59} \mathrm{Cl}_{2} \mathrm{~N}_{5} \mathrm{P}_{2} \mathrm{Si}_{4} \mathrm{Ti}$	$\mathrm{C}_{34} \mathrm{H}_{44} \mathrm{Cl}_{4} \mathrm{~N}_{6} \mathrm{P}_{2} \mathrm{Si}_{2} \mathrm{Ti}_{2}$
M	554.87	879.02	892.46
Space group	$P 2 . / n$	$P \mathrm{I}$	$P 2{ }_{1} / n$
a / pm	$953.0(2)$	$1141.5(4)$	$938.4(2)$
b / pm	$1778.5(3)$	$1250.2(5)$	$1638.5(3)$
c / pm	$1608.0(2)$	$1828.2(8)$	$1459.7(3)$
$\alpha /{ }^{\circ}$	90	$78.18(3)$	90
$\beta /{ }^{\circ}$	$96.70(3)$	$82.06(2)$	$101.42(2)$
$\gamma /{ }^{\circ}$	90	$71.20(2)$	90
U / nm^{3}	2.71	2.41	2.20
Z	4	2	2
$D / \mathrm{Mg} \mathrm{m}^{-3}$	1.362	1.211	1.347
μ / mm^{-1}	0.77	0.48	0.76
Crystal size (mm)	$0.6 \times 0.65 \times 0.7$	$0.2 \times 0.3 \times 0.3$	$0.3 \times 0.3 \times 0.2$
Reflections, unique	3322	6251	2854
observed	2941	3553	2.174
R	0.037	0.103	0.049
R^{\prime}	0.038	0.076	0.047
Weighting scheme,		0.0006	0.0006
$w^{-1}=\sigma^{2}(F)+g F^{2}$ with $g=$	0.0002	469	226

Table 2. Atomic co-ordinates ($\times 10^{4}$) for compound (1)

Atom	x	y	z	Atom	x	y	z
Ti	$1011(1)$	$7042(1)$	$1721(1)$	$\mathrm{C}(6)$	$-511(4)$	$5936(2)$	$4310(2)$
$\mathrm{Cl}(1)$	$2189(1)$	$7501(1)$	$643(1)$	$\mathrm{C}(7)$	$121(4)$	$7594(2)$	$4165(2)$
$\mathrm{Cl}(2)$	$37(1)$	$8182(1)$	$2066(1)$	$\mathrm{C}(8)$	$-2310(4)$	$6860(2)$	$3035(3)$
$\mathrm{Cl}(3)$	$-1000(1)$	$6708(1)$	$883(1)$	$\mathrm{C}(11)$	$545(3)$	$4966(2)$	$2718(2)$
$\mathrm{Si}(1)$	$2928(1)$	$5547(1)$	$101(1)$	$\mathrm{C}(12)$	$959(3)$	$4372(2)$	$3251(2)$
$\mathrm{S}(2)$	$-495(1)$	$6741(1)$	$3569(1)$	$\mathrm{C}(13)$	$9(3)$	$3805(2)$	$3383(2)$
$\mathrm{N}(1)$	$1985(3)$	$6026(2)$	$1731(1)$	$\mathrm{C}(14)$	$-1358(4)$	$3837(2)$	$2991(2)$
$\mathrm{N}(2)$	$641(3)$	$6540(2)$	$2805(1)$	$\mathrm{C}(15)$	$-1765(4)$	$4414(2)$	$2441(2)$
$\mathrm{N}(3)$	$2901(3)$	$7488(2)$	$2526(1)$	$\mathrm{C}(16)$	$-830(3)$	$4981(2)$	$2295(2)$
$\mathrm{C}(1)$	$3717(3)$	$7721(2)$	$3031(2)$	$\mathrm{C}(21)$	$3136(3)$	$5740(2)$	$3417(2)$
$\mathrm{C}(2)$	$4737(4)$	$8013(2)$	$3695(2)$	$\mathrm{C}(22)$	$4237(3)$	$5255(2)$	$3292(2)$
P	$1583(1)$	$5808(1)$	$2654(1)$	$\mathrm{C}(23)$	$5470(4)$	$5255(2)$	$3848(2)$
$\mathrm{C}(3)$	$4771(4)$	$5894(2)$	$1117(2)$	$\mathrm{C}(24)$	$5585(4)$	$5730(2)$	$4532(2)$
$\mathrm{C}(4)$	$2877(4)$	$4517(2)$	$1199(2)$	$\mathrm{C}(25)$	$4500(4)$	$6200(2)$	$4666(2)$
$\mathrm{C}(5)$	$2044(4)$	$5680(2)$	$-75(2)$	$\mathrm{C}(26)$	$3272(4)$	$6210(2)$	$4108(2)$

Table 3. Atomic co-ordinates ($\times 10^{4}$) for compound (2)

Atom	x	y	z	Atom	x	y	z
Ti	$3071(2)$	$326(2)$	$2274(1)$	$\mathrm{C}(22)$	$5087(11)$	$-1452(11)$	$4037(8)$
$\mathrm{Si}(1)$	$884(3)$	$1678(3)$	$3617(2)$	$\mathrm{C}(23)$	$5603(13)$	$-1320(12)$	$4636(11)$
$\mathrm{Si}(2)$	$1938(3)$	$891(3)$	$475(2)$	$\mathrm{C}(24)$	$5331(16)$	$-1816(16)$	$5342(12)$
$\mathrm{Si}(3)$	$3993(3)$	$-3718(3)$	$2220(2)$	$\mathrm{C}(25)$	$4467(16)$	$-2413(14)$	$5477(9)$
$\mathrm{Si}(4)$	$6147(3)$	$-3932(3)$	$3127(2)$	$\mathrm{C}(26)$	$3950(12)$	$-2557(12)$	$4868(9)$
$\mathrm{Cl}(1)$	$4712(2)$	$-97(3)$	$1367(2)$	$\mathrm{C}(31)$	$233(9)$	$3070(9)$	$1596(6)$
$\mathrm{Cl}(2)$	$4011(2)$	$1364(3)$	$2782(2)$	$\mathrm{C}(32)$	$-819(10)$	$3666(10)$	$1196(7)$
$\mathrm{P}(1)$	$3583(3)$	$-2248(3)$	$3366(2)$	$\mathrm{C}(33)$	$-1047(13)$	$4809(11)$	$906(8)$
$\mathrm{P}(2)$	$701(2)$	$1550(3)$	$1966(2)$	$\mathrm{C}(34)$	$-283(15)$	$5373(12)$	$1029(9)$
$\mathrm{N}(1)$	$1326(6)$	$1280(7)$	$2744(5)$	$\mathrm{C}(35)$	$774(15)$	$4813(13)$	$1403(10)$
$\mathrm{N}(2)$	$1822(6)$	$845(7)$	$1445(5)$	$\mathrm{C}(36)$	$1030(11)$	$3664(11)$	$1677(8)$
$\mathrm{N}(3)$	$3256(7)$	$-1073(7)$	$2822(5)$	$\mathrm{C}(41)$	$361(9)$	$1410(10)$	$119(7)$
$\mathrm{N}(4)$	$4520(8)$	$-3342(7)$	$2993(5)$	$\mathrm{C}(42)$	$2786(10)$	$1891(10)$	$-11(7)$
$\mathrm{C}(1)$	$2171(10)$	$-2603(11)$	$3710(6)$	$\mathrm{C}(43)$	$2724(10)$	$-570(9)$	$225(6)$
$\mathrm{C}(2)$	$2195(13)$	$-3732(12)$	$4038(8)$	$\mathrm{C}(51)$	$1854(10)$	$634(10)$	$4317(6)$
$\mathrm{C}(3)$	$1105(18)$	$-3958(15)$	$4264(9)$	$\mathrm{C}(52)$	$-757(9)$	$1754(13)$	$3935(8)$
$\mathrm{C}(4)$	$-30(17)$	$-3094(21)$	$4166(10)$	$\mathrm{C}(53)$	$1026(14)$	$3106(11)$	$3633(8)$
$\mathrm{C}(5)$	$-82(12)$	$-2001(16)$	$3847(9)$	$\mathrm{C}(61)$	$7004(11)$	$-2907(11)$	$2639(8)$
$\mathrm{C}(6)$	$1029(12)$	$-1760(12)$	$3634(7)$	$\mathrm{C}(62)$	$6490(11)$	$-4385(11)$	$4135(8)$
$\mathrm{C}(11)$	$-665(8)$	$1051(9)$	$2053(7)$	$\mathrm{C}(63)$	$6820(12)$	$-5292(10)$	$2743(8)$
$\mathrm{C}(12)$	$-519(10)$	$-16(10)$	$1912(7)$	$\mathrm{C}(71)$	$3961(13)$	$-5233(11)$	$2453(9)$
$\mathrm{C}(13)$	$-1523(12)$	$-455(11)$	$2014(8)$	$\mathrm{C}(72)$	$5015(12)$	$-3438(12)$	$1371(7)$
$\mathrm{C}(14)$	$-2647(12)$	$187(13)$	$2267(8)$	$\mathrm{C}(73)$	$2390(11)$	$-2861(11)$	$1998(8)$
$\mathrm{C}(15)$	$-2805(10)$	$1248(13)$	$2400(8)$	$\mathrm{N}(5)$	$6666(21)$	$3937(24)$	$253(20)$
$\mathrm{C}(16)$	$-1812(9)$	$1699(10)$	$2289(7)$	$\mathrm{C}(81)$	$5844(28)$	$3447(26)$	$575(21)$
$\mathrm{C}(21)$	$4265(10)$	$-2079(10)$	$4144(8)$	$\mathrm{C}(82)$	$4905(24)$	$3006(23)$	$799(14)$

Table 4. Atomic co-ordinates ($\times 10^{4}$) for compound (3)

Atom	x	y	z	Atom	x	y	z
Ti	$426(1)$	$315(1)$	$4123(1)$	$\mathrm{C}(11)$	$2994(5)$	$1211(3)$	$6788(3)$
$\mathrm{Cl}(1)$	$2196(1)$	$1127(1)$	$3629(1)$	$\mathrm{C}(12)$	$3880(5)$	$538(3)$	$6748(3)$
$\mathrm{Cl}(2)$	$-1359(1)$	$1257(1)$	$3580(1)$	$\mathrm{C}(13)$	$5348(5)$	$579(3)$	$7125(4)$
P	$1066(1)$	$1086(1)$	$6379(1)$	$\mathrm{C}(14)$	$5934(5)$	$1291(3)$	$7550(3)$
$\mathrm{N}(1)$	$310(4)$	$511(2)$	$7034(2)$	$\mathrm{C}(15)$	$5058(6)$	$1967(3)$	$7589(4)$
$\mathrm{N}(2)$	$750(4)$	$585(2)$	$5406(2)$	$\mathrm{C}(16)$	$3589(5)$	$1924(3)$	$7207(3)$
Si	$676(1)$	$381(1)$	$8242(1)$	$\mathrm{C}(21)$	$-749(6)$	$-260(4)$	$8573(4)$
$\mathrm{C}(1)$	$297(5)$	$2095(2)$	$6174(3)$	$\mathrm{C}(22)$	$2465(6)$	$-101(4)$	$8677(4)$
$\mathrm{C}(2)$	$621(5)$	$2564(3)$	$5445(3)$	$\mathrm{C}(23)$	$701(7)$	$1385(3)$	$8848(4)$
$\mathrm{C}(3)$	$29(6)$	$3330(3)$	$5275(3)$	$\mathrm{N}(3)$	$2284(4)$	$-546(2)$	$4439(2)$
$\mathrm{C}(4)$	$-883(6)$	$3642(3)$	$5816(4)$	$\mathrm{C}(31)$	$3136(5)$	$-1022(3)$	$4671(3)$
$\mathrm{C}(5)$	$-1219(6)$	$3175(3)$	$6537(4)$	$\mathrm{C}(32)$	$4239(6)$	$-1658(3)$	$4967(4)$
$\mathrm{C}(6)$	$-631(5)$	$2404(3)$	$6711(3)$				

Table 5. Selected bond lengths (pm) and angles $\left(^{\circ}\right)$ for compound (1)

$\mathrm{Ti}-\mathrm{N}(1)$	$203.3(3)$
$\mathrm{Ti}-\mathrm{N}(2)$	$202.6(2)$
$\mathrm{Ti}-\mathrm{Cl}(1)$	$232.0(1)$
$\mathrm{Ti}-\mathrm{Cl}(2)$	$232.4(1)$
$\mathrm{Ti}-\mathrm{Cl}(3)$	$228.9(1)$
$\mathrm{Ti}-\mathrm{N}(1)-\mathrm{P}$	$93.6(1)$
$\mathrm{Ti}-\mathrm{N}(1)-\mathrm{Si}(1)$	$133.7(1)$
$\mathrm{Ti}-\mathrm{N}(2)-\mathrm{P}$	$94.0(1)$
$\mathrm{Ti}-\mathrm{N}(2)-\mathrm{Si}(2)$	$133.8(1)$
$\mathrm{Ti}-\mathrm{N}(3)-\mathrm{C}(1)$	$169.0(3)$
$\mathrm{N}(1)-\mathrm{Ti}-\mathrm{N}(2)$	$74.1(1)$

$\mathrm{Ti}-\mathrm{N}(3)$	$223.7(2)$
$\mathrm{N}(1)-\mathrm{P}$	$162.2(2)$
$\mathrm{N}(2)-\mathrm{P}$	$16.6(3)$
$\mathrm{N}(1)-\mathrm{Si}(1)$	$176.6(3)$
$\mathrm{N}(2)-\mathrm{Si}(2)$	$176.5(3)$
$\mathrm{N}(1)-\mathrm{P}-\mathrm{N}(2)$	$98.0(1)$
$\mathrm{Si}(1)-\mathrm{N}(1)-\mathrm{P}$	$132.7(2)$
$\mathrm{Si}(2)-\mathrm{N}(2)-\mathrm{P}$	$131.6(2)$
$\mathrm{C}(11)-\mathrm{P}-\mathrm{C}(21)$	$108.4(1)$
$\mathrm{N}-\mathrm{P}-\mathrm{C}($ average $)$	112.5

exceeds the sum of two covalent single bond radii (ca. 265 pm^{9}).

Although the Ti- N bonds in compound (1) have to be considered single bonds $\left[r_{\mathrm{cov}}(\mathrm{Ti})+r_{\mathrm{cov}}(\mathrm{N}) \approx 203 \mathrm{pm}^{9}\right], *$ and are comparable with those in the $\mathrm{PN}_{2} \mathrm{Ti}$ ring reported by Niecke et al., ${ }^{5}$ the endocyclic $\mathrm{Ti}-\mathrm{N}$ bonds in (2) [208.5(9) pm and $213.1(7) \mathrm{pm}]$ are definitively longer than single bonds, but resemble those found in the bis(amidine) chelate complex $\left[\mathrm{TiCl}_{2}\left\{\mathrm{PhC}\left(\mathrm{NSiMe}_{3}\right)_{2}\right\}_{2}\right]$ (206.6 and 210.1 pm$) .{ }^{4}$ The exocyclic $\mathrm{Ti}-\mathrm{N}$ bond $[179.2(9) \mathrm{pm}]$ is among the shortest $\mathrm{Ti}-\mathrm{N}$ bonds known so far; only the bonds in $\left[\mathrm{Ti}\left(\mathrm{cp}^{2}\right) \mathrm{Cl}_{2}\left(\mathrm{NPPh}_{3}\right)\right]$ (cp = $\left.\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)[177.5(13) \mathrm{pm}]^{20}$ and $\left[\mathrm{Ti}(\mathrm{cp}) \mathrm{Cl}_{2}\left\{\mathrm{NPPh}_{2} \mathrm{NS}(\mathrm{O}) \mathrm{Me}_{2}\right\}\right]$ [176.4(2) pm] ${ }^{21}$ are shorter. The Ti- $\mathrm{N}-\mathrm{P}$ linkage is almost linear $\left[170.3(7)^{\circ}\right]$; similar bond angles in $\mathrm{Ti}-\mathrm{N}$ compounds have been found only in the two cases mentioned above. The $s p^{2}$ hybridisation of the N atom suggests a strong donor capacity that has been found in a wide variety of transition metalnitrogen bonds. ${ }^{22}$ The $\mathrm{P}-\mathrm{N}$ bond adjacent to the Ti atom [156.1(9) pm] could be described as a $\mathrm{P}^{\mathrm{v}}=\mathrm{N}$ double bond.

Another unusual structure feature of (2) is the five-coordinated Ti atom.

Five-co-ordinated Ti atoms in four-membered rings have been observed in e.g. $\left[\left\{\mathrm{TiCl}_{3}(\mathrm{OR})\right\}_{2}\right]$ with $\mathrm{Ti}-\mathrm{O}-\mathrm{Ti}$ bridges

* The Ti-N single bond length has been previously estimated to be 196 $\mathrm{pm} .{ }^{13}$ Such bond lengths are strongly dependent on the geometry of Ti , the direction of the bond, and the donor capacity of $\mathrm{N} .{ }^{14}$ For a listing of different types of $\mathrm{Ti}-\mathrm{N}$ bonds see refs. 15 and 16 and literature cited therein. A Ti-N single bond length of 203 pm would also be consistent with $\mathrm{Ti}-\mathrm{C}$ distances of about $210 \mathrm{pm},{ }^{8,17}$ where dative interactions can be excluded. The mean $\mathrm{Ti}-\mathrm{C}$ bond length in $\left[\left\{\mathrm{Ti}(\mathrm{OMe})_{2}(\mu-\mathrm{OMe})(\mu-\right.\right.$ $\left.\left.\mathrm{CH}_{2} \mathrm{PMe}_{2} \mathrm{CH}_{2}\right)\right\}_{2}$] is extended to $225 \mathrm{pm} ;^{18}$ the $\mathrm{CH}_{2} \mathrm{PMe}_{2} \mathrm{CH}_{2}$ bridge is isoelectronic to $\mu-\left(\mathrm{Me}_{3} \mathrm{SiN}\right)_{2} \mathrm{PPh}_{2}$ in our compounds. In $\left[\mathrm{Ti}(\mathrm{cp})_{2}(\mathrm{CO})_{2}\right]$, where back donation may be postulated, the Ti-C bond is shortened to $203 \mathrm{pm} .{ }^{19}$

Table 6. Selected bond lengths (pm) and angles $\left({ }^{\circ}\right)$ for compound (2)

$\mathrm{Ti}-\mathrm{N}(1)$	$213.1(7)$	$\mathrm{N}(2)-\mathrm{Si}(2)$	$175.0(10)$
$\mathrm{Ti}-\mathrm{N}(2)$	$208.5(9)$	$\mathrm{Ti}-\mathrm{N}(3)$	$179.2(9)$
$\mathrm{Ti}-\mathrm{Cl}(1)$	$232.3(3)$	$\mathrm{N}(3)-\mathrm{P}(1)$	$156.1(9)$
$\mathrm{Ti}-\mathrm{Cl}(2)$	$231.7(4)$	$\mathrm{P}(1)-\mathrm{N}(4)$	$164.9(9)$
$\mathrm{N}(1)-\mathrm{P}(2)$	$160.4(9)$	$\mathrm{N}(4)-\mathrm{Si}(3)$	$180.8(12)$
$\mathrm{N}(2)-\mathrm{P}(2)$	$161.3(8)$	$\mathrm{N}(4)-\mathrm{Si}(4)$	$179.6(9)$
$\mathrm{N}(1)-\mathrm{Si}(1)$	$172.9(10)$		
$\mathrm{Ti}-\mathrm{N}(1)-\mathrm{P}(2)$	$92.2(4)$	$\mathrm{N}(2)-\mathrm{Ti}-\mathrm{Cl}(1)$	$89.9(2)$
$\mathrm{Ti}-\mathrm{N}(1)-\mathrm{Si}(1)$	$131.3(5)$	$\mathrm{N}(2)-\mathrm{Ti}-\mathrm{Cl}(2)$	$130.8(3)$
$\mathrm{Ti}-\mathrm{N}(2)-\mathrm{P}(2)$	$93.6(4)$	$\mathrm{Cl}(1)-\mathrm{Ti}-\mathrm{Cl}(2)$	$91.7(1)$
$\mathrm{Ti}-\mathrm{N}(2)-\mathrm{Si}(2)$	$135.5(4)$	$\mathrm{N}(3)-\mathrm{Ti}-\mathrm{Cl}(1)$	$100.2(3)$
$\mathrm{Ti}-\mathrm{N}(3)-\mathrm{P}(1)$	$170.3(7)$	$\mathrm{N}(3)-\mathrm{Ti}-\mathrm{Cl}(2)$	$111.5(4)$
$\mathrm{N}(1)-\mathrm{Ti}-\mathrm{N}(2)$	$72.5(3)$	$\mathrm{N}(3)-\mathrm{P}(1)-\mathrm{N}(4)$	$115.2(5)$
$\mathrm{N}(1)-\mathrm{P}(2)-\mathrm{N}(2)$	$101.6(4)$	$\mathrm{N}(3)-\mathrm{P}(1)-\mathrm{C}($ average $)$	108.4
$\mathrm{Si}(1)-\mathrm{N}(1)-\mathrm{P}(2)$	$136.2(4)$	$\mathrm{N}(4)-\mathrm{P}(1)-\mathrm{C}($ average $)$	108.1
$\mathrm{Si}(2)-\mathrm{N}(2)-\mathrm{P}(2)$	$128.9(5)$	$\mathrm{C}(1)-\mathrm{P}(1)-\mathrm{C}(21)$	$108.5(6)$
$\mathrm{N}(1)-\mathrm{Ti}-\mathrm{N}(3)$	$101.4(3)$	$\mathrm{P}(1)-\mathrm{N}(4)-\mathrm{Si}(3)$	$117.5(5)$
$\mathrm{N}(2)-\mathrm{Ti}-\mathrm{N}(3)$	$116.6(4)$	$\mathrm{P}(1)-\mathrm{N}(4)-\mathrm{Si}(4)$	$123.9(5)$
$\mathrm{N}(1)-\mathrm{Ti}-\mathrm{Cl}(1)$	$156.6(2)$	$\mathrm{Si}(3)-\mathrm{N}(4)-\mathrm{Si}(4)$	$116.5(5)$
$\mathrm{N}(1)-\mathrm{Ti}-\mathrm{Cl}(2)$	$88.7(3)$		

$(\mathrm{R}=\mathrm{Et}$ or Ph$),{ }^{23}$ in the $\mathrm{PN}_{2} \mathrm{Ti}$ ring reported by Niecke et al., ${ }^{5}$ and in $\left[\left\{\mathrm{TiCl}_{2}\left(\mathrm{NSiMe}_{3}\right)\right\}_{2}\right]$ with $\mathrm{Ti}-\mathrm{N}-\mathrm{Ti}$ linkages connected by Cl bridges to form linear chains. ${ }^{14}$ Besides partial disorder in the chains, the two independent units in one polymer strand were found to differ considerably in corresponding $\mathrm{Si}-\mathrm{N}$ and $\mathrm{Ti}-\mathrm{N}$ bond lengths (169 vs. 183 and 194 vs. 199 pm), but the mean values of 176 and 196 pm , respectively, seem plausible. ${ }^{14}$ The $\mathrm{Ti}_{2} \mathrm{~N}_{2}$ core of tricyclic (3) shows somewhat longer Ti-N distances, $189.0(3) \mathrm{pm}$ for the bonds connecting the two $\mathrm{PN}_{2} \mathrm{Ti}$ moieties, and 204.2(4) pm for the bonds common to two rings. While the first is shorter than a typical single bond, the second lies in the range common to the other $\mathrm{PN}_{2} \mathrm{Ti}$ four-membered rings described in this paper and in ref. 5 .

Experimental

Syntheses.-All reactions were carried out under nitrogen or argon, solvents were purified and dried according to literature methods, degassed, and stored under nitrogen or vacuum. The compound $\mathrm{Ph}_{2} \mathrm{P}\left(=\mathrm{NSiMe}_{3}\right)\left[\mathrm{N}\left(\mathrm{SiMe}_{3}\right)_{2}\right]$ was prepared according to ref. 7; TiCl_{4} was fractionally condensed in vacuo. N.m.r. spectra were recorded on a Bruker AM 250 spectrometer.

Compound (1). Titanium tetrachloride ($1.9 \mathrm{~g}, 10 \mathrm{mmol}$) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(100 \mathrm{~cm}^{3}\right)$ were condensed in a flask $\left(250 \mathrm{~cm}^{3}\right)$ at $-190^{\circ} \mathrm{C}$ in vacuo, the mixture flushed with nitrogen, and $\mathrm{Ph}_{2} \mathrm{P}(=\mathrm{NSiMe} 3)\left[\mathrm{N}\left(\mathrm{SiMe}_{3}\right)_{2}\right](4.3 \mathrm{~g}, 10 \mathrm{mmol})$ added with a syringe. After re-evacuation the system was slowly warmed up

Table 7. Selected bond lengths (pm) and angles (${ }^{\circ}$) for compound (3)

$\mathrm{Ti}(1)-\mathrm{Cl}(1)$	235.0(1)	$\mathrm{N}(1)-\mathrm{P}(1)$	160.4(4)
$\mathrm{Ti}(1)-\mathrm{Cl}(2)$	230.0(1)	$\mathrm{N}(1)-\mathrm{Si}(1)$	174.3(3)
$\mathrm{Ti}(1)-\mathrm{N}(1 \mathrm{~A})$	216.7(3)	$\mathrm{N}(2)-\mathrm{P}(1)$	161.7(3)
$\mathrm{Ti}(1)-\mathrm{N}(2)$	189.0(3)	$\mathrm{Ti}(1)-\mathrm{N}(3)$	221.9(4)
$\mathrm{Ti}(1)-\mathrm{N}(2 \mathrm{~A})$	204.2(4)		
$\mathrm{Ti}(1 \mathrm{a})-\mathrm{N}(1)-\mathrm{P}(1)$	90.7(2)	$\mathrm{N}(2)-\mathrm{Ti}(1)-\mathrm{N}(2 \mathrm{a})$	80.0(1)
$\mathrm{Ti}(1 \mathrm{a})-\mathrm{N}(1)-\mathrm{Si}(1)$	132.9(2)	$\mathrm{N}(2 \mathrm{a})-\mathrm{Ti}(1)-\mathrm{Cl}(1)$	167.0(1)
$\mathrm{N}(1)-\mathrm{P}(1)-\mathrm{N}(2)$	101.6(2)	$\mathrm{N}(2 \mathrm{a})-\mathrm{Ti}(1)-\mathrm{Cl}(2)$	101.3(1)
$\mathrm{P}(1)-\mathrm{N}(1)-\mathrm{Si}(1)$	130.8(2)	$\mathrm{N}(2 \mathrm{a})-\mathrm{Ti}(1)-\mathrm{N}(3)$	85.7(1)
$\mathrm{P}(1)-\mathrm{N}(2)-\mathrm{Ti}(1 \mathrm{a})$	95.0(2)	$\mathrm{Cl}(1)-\mathrm{Ti}(1)-\mathrm{Cl}(2)$	91.5(1)
$\mathrm{P}(1)-\mathrm{N}(2)-\mathrm{Ti}(1)$	162.8(2)	$\mathrm{Cl}(1)-\mathrm{Ti}(1)-\mathrm{N}(2)$	100.8(1)
$\mathrm{N}(1 \mathrm{a})-\mathrm{Ti}(1)-\mathrm{N}(2)$	151.9(1)	$\mathrm{Cl}(1)-\mathrm{Ti}(1)-\mathrm{N}(3)$	81.4(1)
$\mathrm{N}(1 \mathrm{a})-\mathrm{Ti}(1)-\mathrm{N}(2 \mathrm{a})$	72.6(1)	$\mathrm{Ti}(1)-\mathrm{N}(2)-\mathrm{Ti}(1 \mathrm{a})$	100.0(1)
$\mathrm{N}(1 \mathrm{a})-\mathrm{Ti}(1)-\mathrm{Cl}(1)$	104.5(1)	$\mathrm{N}(3)-\mathrm{Ti}(1)-\mathrm{N}(2)$	88.6(1)
$\mathrm{N}(1 \mathrm{a})-\mathrm{Ti}(1)-\mathrm{Cl}(2)$	93.0(1)	$\mathrm{Cl}(2)-\mathrm{Ti}(1)-\mathrm{N}(2)$	98.5(1)
$\mathrm{N}(1 \mathrm{a})-\mathrm{Ti}(1)-\mathrm{N}(3)$	83.2(1)	$\mathrm{Cl}(2)-\mathrm{Ti}(1)-\mathrm{N}(3)$	170.7(1)

to $0^{\circ} \mathrm{C}$, and held at this temperature for 2 h . All volatiles were pumped off, and $\mathrm{MeCN}\left(80 \mathrm{~cm}^{3}\right)$ was condensed at $-190^{\circ} \mathrm{C}$. After warming and dissolving the orange-red residue, the flask was cooled to $-25^{\circ} \mathrm{C}$. Several days later orange cubes began to separate from the solution, m.p. $105^{\circ} \mathrm{C}$ (decomp.) (Found: $\mathrm{C}, 43.8 ; \mathrm{H}, 5.6 ; \mathrm{Cl}, 19.2 ; \mathrm{N}, 7.1 . \mathrm{C}_{20} \mathrm{H}_{31} \mathrm{Cl}_{3} \mathrm{~N}_{3} \mathrm{PSi}_{2}$ Ti requires C, 43.3: $\mathrm{H}, 5.6 ; \mathrm{Cl}, 19.2 ; \mathrm{N}, 7.6 \%)$. $\delta(\mathrm{P})\left(\mathrm{CDCl}_{3}-\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 24.7$ p.p.m.

Compound (2). To a solution of $\mathrm{Ph}_{2} \mathrm{P}\left(=\mathrm{NSiMe}_{3}\right)\left[\mathrm{N}\left(\mathrm{SiMe}_{3}\right)_{2}\right]$ $8.6 \mathrm{~g}, 20 \mathrm{mmol})$ in $\mathrm{MeCN}\left(120 \mathrm{~cm}^{3}\right)$ a solution of $\mathrm{TiCl}_{4}(1.9 \mathrm{~g}$, $10 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(10 \mathrm{~cm}^{3}\right)$ was slowly added at $0^{\circ} \mathrm{C}$. After stirring for 12 h at ambient temperature all volatile material was evaporated and the solid residue dissolved in $\mathrm{MeCN}\left(50 \mathrm{~cm}^{3}\right)$. On cooling, compound (2) crystallised in dark yellow blocks melting at $135^{\circ} \mathrm{C} . \delta(\mathrm{P})\left(\mathrm{CDCl}_{3}-\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 2.7(\mathrm{P}$ chain, s) and 25.3 p.p.m. (P ring, s).

Compound (3). Compound (1) $(1.1 \mathrm{~g}, 2 \mathrm{mmol})$ was dissolved in MeCN ($50 \mathrm{~cm}^{3}$) and heated to $60^{\circ} \mathrm{C}$ for 3 h . After several days at $-25^{\circ} \mathrm{C}$ a mixture of crystals of (1) and (3) precipitated which after filtration were manually separated. $\delta(\mathrm{P})\left(\mathrm{CD}_{3} \mathrm{CN}-\right.$ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) 36.7. p.p.m.

X-Ray Structure Analyses.-All crystals were obtained by fractional crystallisation from MeCN . All structures were measured on a Stoe-Siemens four-circle diffractometer with graphite-monochromated Mo- K_{α} radiation. Data were collected at $-85\left[(1)\right.$ and (3)] and $18^{\circ} \mathrm{C}$ [(2)] with a profile fitting method, ${ }^{24} 2 \theta_{\text {max. }}=45^{\circ}$, and reflections with $|F|>3 \sigma(F)$ were treated as observed. The structures were solved by Patterson and Fourier methods, and refined by full-matrix least squares (on F), with all non-hydrogen atoms anisotropic. A riding model was employed for the H atoms with idealised geometry. Structure (2) contains one molecule of acetonitrile [N(5), C(81), and $C(82)]$ per asymmetric unit, which exhibits high thermal motion and presumably accounts for the relatively high R index. All calculations were performed with SHELX 76^{25} and SHELX $86 .{ }^{26}$ Crystallographic data for compounds (1)-(3) are shown in Table 1, atomic co-ordinates in Tables 2-4, and selected bond lengths and angles in Tables 5-7.
Additional material available from the Cambridge Crystallographic Data Centre comprises H -atom co-ordinates, thermal parameters, and remaining bond distances and angles.

Acknowledgements

We are grateful to V. W. Stiftung, Fonds der Chemischen Industrie and the Deutsche Forschangsgemein-Schaft for financial support.

References

1 H. W. Roesky, J. Anhaus, H. G. Schmidt, G. M. Sheldrick, and M. Noltemeyer, J. Chem. Soc., Dalton Trans., 1983, 1207; J. Hanich, W. Krestel, U. Müller, K. Dehnicke, and D. Rehder, Z. Naturforsch., Teil B, 1983, 39, 1686.
2 H. W. Roesky, K. V. Katti, U. Seseke, M. Witt, E. Egert, R. Herbst, and G. M. Sheldrick, Angew. Chem., 1986, 98, 447; Angew. Chem., Int. Ed. Engl., 1986, 25, 477; H. W. Roesky, K. V. Katti, U. Seseke, H. G. Schmidt, E. Egert, R. Herbst, and G. M. Sheldrick, J. Chem. Soc., Dalton Trans., 1987, 847; K. V. Katti, H. W. Roesky, and M. Rietzel, Inorg. Chem., 1987, 26, 814, 4032; K. V. Katti, U. Seseke, M. Witt, and H. W. Roesky, Phosphorus Sulfur, 1987, 30, 421; K. V. Katti, H. W. Roesky, and M. Rietzel, Z. Anorg. Allg. Chem., 1987, 553, 123.
3 M. Witt, H. W. Roesky, M. Noltemeyer, and G. M. Sheldrick, Angew. Chem., 1988, 100, 852; Angew. Chem., Int. Ed. Engl., 1988, 27, 851.
4 H. W. Roesky, B. Meller, M. Noltemeyer, H. G. Schmidt, U. Scholz, and G. M. Sheldrick, Chem. Ber., 1988, 121, 1403.
5 E. Niecke, R. Kröher, and S. Pohl, Angew. Chem., 1977, 89, 902; Angew. Chem., Int. Ed. Engl., 1977, 16, 864.
6 J. D. Matthews, N. Singer, and A. G. Swallow, J. Chem. Soc. A, 1970, 2545.

7 M. Witt, H. W. Roesky, M. Noltemeyer, and A. Schmidpeter, New J. Chem., 1989, 13, 403.
8 M. T. Reetz, 'Organotitanium Reagents in Organic Synthesis,' Springer, Berlin, 1986; Top. Curr. Chem., 1986, 106, 1.
9 L. Pauling, 'The Nature of the Chemical Bond and the Structure of Molecules and Crystals,' 3rd edn., Cornell University Press, 1960.
10 J. E. Huheey, 'Inorganic Chemistry,' 3rd edn., Harper and Row, New York, 1983.
11 H. R. Allcock, 'Phosphorus-nitrogen Compounds,' Academic Press, New York and London, 1972.
12 A. Bondi, J. Phys. Chem., 1964, 68, 441.
13 J. Fayos and D. Mootz, Z. Anorg. Allg. Chem., 1971, 380, 196.
14 N. W. Alcock, M. Pierce-Butler, and G. R. Willey, J. Chem. Soc., Dalton Trans., 1976, 707.
15 J. C. J. Bart, I. V. Bassi, G. F. Cerruti, and M. Calcaterra, Gazz. Chim. Ital., 1980, 110, 423.
16 G. Fochi, C. Floriani, J. C. J. Bart, and G. Giunchi, J. Chem. Soc., Dalton Trans., 1983, 1515.
17 G. Wilkinson, F. G. A. Stone, and E. W. Abel, 'Comprehensive Organometallic Chemistry, Pergamon, Oxford, New York, Toronto, Sidney, Paris, and Frankfurt, 1982, vol. 9, pp. 1485-1489 and refs. therein.
18 U. Schubert, D. Neugebauer, and W. Scharf, J. Organomet. Chem., 1981, 206, 159.
19 J. L. Atwood, K. E. Stone, H. G. Alt, D. C. Hrncir, and M. D. Rausch, J. Organomet. Chem., 1977, 132, 367.

20 I. A. Latham, G. J. Leigh, G. Huttner, and I. Jibril, J. Chem. Soc., Dalton Trans., 1986, 377.
21 H. W. Roesky, F. Schrumpf, and M. Noltemeyer. Z. Naturforsch., Teil B, 1988, 44, 35.
22 K. Dehnicke and J. Strähle, Angew. Chem., 1981. 93, 451; Angew. Chem., Int. Ed. Engl., 1981, 20, 413.
23 W. Hoppe and W. Haase, Acta Crystallogr., Sect. B, 1968, 24, 281; K. Watenpaugh and O. N. Caughlan, Inorg. Chem., 1966, 5, 1782.

24 W. Clegg, Acta Crystallogr., Sect. A, 1981, 37, 22.
25 G. M. Sheldrick, SHELX 76, crystal structure refinement program, University of Cambridge, 1976.
26 G. M. Sheldrick, SHELX 86, program for crystal structure solution, University of Göttingen.

Received 30th December 1988; Paper 8/05029E

[^0]: \dagger Supplementary data available: see Instructions for Authors, J. Chem. Soc., Dalton Trans., 1989, Issue 1, pp. xvii-xx.

[^1]: * Though exact values for covalent and van der Waals radii are not available for covalently bound Ti , the sum of van der Waals radii of P and Ti can be estimated to exceed $300 \mathrm{pm} .^{9.12}$

